Anaphoricity, Presuppositions, and Memory Retrieval Processes

Sherry Yong Chen (MIT)

Joint work with E. Matthew Husband (Oxford)
Language comprehension involves establishing linguistic dependencies:

- To study comprehension, we can look at real-time processing, partly because its inherently linear organization mirrors speech in some ways.

- To establish linguistic dependencies, the comprehender must successfully retrieve the memory representation of an antecedent.

- How is the representation of an antecedent retrieved from memory?
ROADMAP

- Presuppositions and memory retrieval
- Drift Diffusion Modelling (DDM)
- Experimental design
- Results & Conclusions
- Discussions
Too as an Anaphoric Trigger

- Treating presuppositions analogously to anaphoric expressions such as pronouns (Kripke, 1990/2009; van der Sandt, 1992; Beck, 2007; a.o.).

- “Anaphoric” is taken to mean “requiring a contextually provided antecedent”.

- *too* establishes an anaphoric dependency between the trigger and the presupposed content.
Too: Focus Sensitivity

- For example:
 - John went swimming. Mary went swimming too.

- Note: *too* is actually Focus sensitive and is not restricted to VPs (e.g. John went swimming; he went dancing too), but this use is not our concern here.
PREDICTION FOR TOO

- We expect to see that the processing of *too* would share the same processing signature as other anaphoric expressions.
 - e.g. Pronoun resolution, VP ellipses, Sluicing constructions

- We use a specific memory retrieval model to investigate the processing of *too*.

- Question: what is the memory retrieval mechanism that underlies the processing of *too*?
Overview of the memory retrieval model:

(1) A memory retrieval process is initiated.

(2a) The memory retrieval process of many anaphoric dependencies uses “direct access mechanism”.

(2b) A key property of a direct access mechanism is that it is cue-based.
(1) A memory retrieval process is initiated in order to establish an anaphoric dependency.

- John went swimming. Mary went swimming *too*.
- John went swimming. Mary went dancing.
HYPOTHESIS FOR THE RETRIEVAL PROCESS

Trigger ➔ Retrieving presupposed content

- Successful
 - Update context
 - Successful
 - Update context
 - Unsuccessful
 - Accommodate
 - Successful
 - Update context
 - Unsuccessful
 - Ignore?
 - Successful
 - Unsuccessful
 - Reject utterance
TODAY’S FOCUS:

- We experimentally investigate this process.
Direct access mechanism: when retrieving the memory representation of an antecedent, only the target representation is considered (Foraker & McElree, 2007; Martin & McElree, 2008, 2011).

Quality of the representation for remote antecedents are decayed.

But increased distance between the antecedent and the retrieval site has no effect on retrieval speed.
Set of representations being inspected: \{Mary\}

Decayed quality

- **Mary**
 - [SG]
 - [F]

- **John**
 - [SG]
 - [M]

- **herself**
 - [SG]
 - [F]
MEMORY RETRIEVAL MECHANISMS: TWO HYPOTHESES

- **Serial search** mechanism: multiple representations are inspected; irrelevant intermediate contents are necessarily accessed before finding the target representation (Dillon et al, 2014).

- Perhaps not possible to immediately identify the target representation.

- Structural properties of an antecedent may be relevant for determining which representation is the target.
Set of representations being inspected: \{Mary, John\}

- Intermediate contents might be unsuitable as antecedents, but very relevant for determining whether the dependency is legitimate.
- e.g. c-commanding relations can be easily checked via a serial walk through the structure
(2a) The memory retrieval process of many anaphoric dependencies is via **direct access**.

- Pronoun resolution (Foraker & McElree, 2007)
- VP ellipsis (Martin & McElree, 2008)
- Sluicing (Martin & McElree, 2011)

- We may expect to see that a direct access memory retrieval mechanism also underlies the processing of an anaphoric trigger, such as **too**.
(2b) A direct access model is cue-based.

- Cues are hypothesised to be information such as “grammatical constraints”: e.g. morpho-syntactic cues.
To distinguish *serial search* from *direct access*, we need to tease apart retrieval speed and accuracy……

But they are confounded in simple reaction time measures:

- Longer reaction times may be due to the time it takes to access a more remote antecedent (i.e. extra processing steps are required).

- Or it may simply reflect the decayed quality of the representation of a more remote antecedent (but retrieval speed is not necessarily slowed!).
DRIFT DIFFUSION MODELLING

- DDM jointly models accuracy and response time distributions, with parameters that reflect distinct underlying memory retrieval processes (Ratcliff 1978; Ratcliff, et al., 2016; McElree & Dosher 1989)

- From these measurements, a retrieval function is estimated that relates accuracy to elapsed processing time.

- End product: A best-fit model with several key parameters
DRIFT DIFFUSION MODELLING

- \(\tau \), nondecision time: the time required for memory access
- δ, drift rate: the asymptotic accuracy
DRIFT DIFFUSION MODELLING

- \(\alpha \), boundary separation: the retrieval speed & the asymptote
Drift Diffusion Modelling

- β, response bias

![Changes in Beta (Response Bias)](image)
THE TAKE-HOME MESSAGE

- A difference in τ or α can be used to infer that a serial search retrieval process is at play.
- The lack of this difference indicates a direct access retrieval process.
EXPERIMENTAL DESIGN

- Speeded acceptability judgement study (N = 64):
 - An experimenter-paced sentence reading task
 - Phrase-by-phrase with RSVP presentation (400 msec/phrase)
 - Followed by an end-of-sentence acceptability judgment with binary choices.
EXPERIMENTAL DESIGN

- Distance was manipulated as **Near** or **Far**.
- Context (the VP) was **Same** or **Different**, satisfying or failing to satisfy the presuppositions respectively.

<table>
<thead>
<tr>
<th></th>
<th>Same</th>
<th>Different</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near</td>
<td>If the editor resigned, then the critics resigned too.</td>
<td># If the editor plagiarized, then the critics resigned too.</td>
</tr>
<tr>
<td>Far</td>
<td>If the editor resigned, then everyone from the publishing house would be shocked to hear that the critics resigned too.</td>
<td># If the editor plagiarized, then everyone from the publishing house would be shocked to hear that the critics resigned too.</td>
</tr>
</tbody>
</table>
PREDICTIONS

- Accuracy:
 - A distance effect, with higher accuracy in the Near condition.

- Response time:
 - No distance effect is expected.
 - If there are (hints of) distance effects, DDM is useful to check whether it’s due to a difference in retrieval speed or just the quality of memory representation.
RESULTS: ACCURACY

- Participants were more accurate in the **Near** condition, suggesting **accuracy** differences.

- A main effect of Distance ($t = 4.769$, $p < .001$) and Context ($t = 3.604$, $p < .001$).

- Their interaction was non-significant ($t = 0.671$, $p = .502$).
A marginally significant interaction between Distance and Context ($t = 1.799, p = .079$), and a main effect of Context ($t = -2.755, p = .007$).

Planned comparison revealed no effects of Distance within the Context types.
RESULTS: DDM ANALYSIS

- Presupposition & Memory
- Drift Diffusion
- Experiments
- Results
- Discussion
RESULTS: DDM ANALYSIS

<table>
<thead>
<tr>
<th></th>
<th>τ (retrieval speed)</th>
<th>α (rate)</th>
<th>δ (accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>1.691</td>
<td>0.863</td>
<td>-1.725</td>
</tr>
<tr>
<td>Context</td>
<td>2.100*</td>
<td>0.821</td>
<td>4.261***</td>
</tr>
<tr>
<td>Interaction</td>
<td>0.941</td>
<td>-0.051</td>
<td>-0.310</td>
</tr>
</tbody>
</table>

- DDM revealed no effect of *Distance* on τ or α.
- No significant effects of *Distance* was found in terms of speed of retrieval.
The memory retrieval process of the presupposition trigger *too* shares the processing signature of many anaphoric expressions:

- (1) A memory retrieval process is initiated.
- (2a) This process is via direct access.
- (2b) What **cues** are being exploited for *too* to identify the target representation remains to be explored.
The conclusion for a direct access retrieval process is based on the lack of any difference in τ or α.

Could it be due to the lack of statistical power?

A general concern for the studies on memory retrieval process.

Being less resource-intensive and time consuming technique compared to Multiple-Response SAT paradigm, DDM offers more opportunities for replication.
One concern in our current design:

- The same VP was used to satisfy the presupposition of *too*.
- The same “form” may serve as a cue, making it possible to directly identify the target antecedent.

Next step: using synonymous verbs to satisfy the presupposition (see also Göbel (2018)).

- e.g. *If the editor resigned, then the critics quit too*.

This may shed light on what cues are actually available during the retrieval of the representation of a presupposed content.
What is a possible antecedent for *too*?

- We could need to add another propositional-level antecedent between the presupposed content and *too*.

- *e.g.* *If the editor resigned and the writers went on a strike, then everyone from the publishing house would be shocked to hear that the critics quit too.*

- This will then help us fully consider the sophisticated version of the serial search model, and understand the extent to which the memory retrieval process of *too* is directly accessible.
Three relevant dimensions for considering which memory retrieval mechanism is at play:

- What is a suitable antecedent in a particular type of dependency?
- How much information is available for identifying the target antecedent?
- What are the structural properties of an antecedent that need to be taken into consideration?
SELECTED REFERENCES

THANK YOU!

Acknowledgements

We thank Athulya Aravind, Brian Dillon, Alex Göbel, Martin Hackl, Filipe Hisao Kobayashi, and Colin Phillips for their helpful comments. All remaining errors are our own.